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Interplay of capillary and elastic driving forces during microstructural
evolution: Applications of a digital image model
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A recently developed model of curvature-driven, two-dimensional microstructure evolution is
modified to include elastic strain energy at solid-fluid interfaces as an additional driving force for
mass transport. Local phase distributions within a digital image of the microstructure are used to
interpolate an isopotential contour that represents the equivalent sharp surface, along which local
properties such as curvature are calculated. To determine the strain energy distribution, a finite
element method is employed, using the pixel grid as the mesh. Interface-reaction-controlled mass
transport is simulated using a finite difference approach along the interface. Calculations of the
strain energy density and chemical potential distributions within simple systems show reasonable
agreement with analytical results, and the predicted stability and evolution of such systems also
agree with the predictions of other investigators. The model is also applied to a more complex
system for which neither analytical nor other numerical methods can be readily used, and useful
guantitative information is obtained on the energetics and structural changes99® American
Institute of Physicq.S0021-897@8)01408-X

I. INTRODUCTION ity of planar surfaces. These theoretical investigations all
conclude that elastic deformation alters the boundary values

In a recent ar't|cle, one of th'e agthors described a NUMETl5¢ the chemical potential and, therefore, can significantly al-
cal method for simulating dissipative temporal evolution Ofter the rate and trajectory of interface motion

gNo-dlmens;onalln:_lcrostructg_rés'l;hat rr;_etlh(;)_?f mO(:_e IIS the On the basis of these considerations, it seems desirable
yhamics ot evoiution according to partial diferential €qua-y, a6 4 numerical model that not only can assess the sta-

tions derived from linear irreversible thermodynamics, andbiIity of interface morphologies, but that also can track in-
tracks the resulting interface motion. When the assumption i§ '

made that global interface free energy provides the only ap_erface motion in microstructures under the influence of both
preciable driving force, then—provided that the interfacecs:ur\ll"’m.JtrZ(f4 graglents lant(_j glastu:, (:efortmatlpn. ]Zg?g ;emd
free energy density is isotropic—the local driving force for ro ct)V| d lﬁe an Ietastlr:: reTnt_s uglc |onf n ad.'f?l e e-f
evolution is determined solely by gradients in the interfacial™ €" mg elto S|m-l(1ja|e (fa evolu |(cj)n yhsur age. y us}|on °

mean curvaturé Curvature gradients are therefore sufficient® Periodic sinusoidal surface under these driving forces.

15-17 : :
to describe the driving force for Ostwald ripening of a dis- Vang etal. have used a time-dependent Ginzburg—
persed phase in a flutf for coarsening in porous media, Landau(TDGL) model to simulate the shape evolution of

for high-temperature crack healifignd for the instability of coherent!y misfitting solid precipitates in a solid matrix when
long cylinders toward spheroidizatidn. the elastic constants of both phases are the same. The latter
On the other hand, it has long been recognized that elaghodeling approach has the advantage that interface tracking
tic deformation can also provide an appreciable driving forcdS automatic, even during topological changes.
for interface motion. Charles and Hillig were perhaps the In this article, we extend the numerical model reported
first to incorporate elastic driving forces in a description ofin @ previous articleto include elastic strain energy density
cavity growth during static fatigue of glasst$Asaro and  at solid/fluid interfaces. In contrast to the TDGL models, this
Tiller included elastic strain energy density in a descriptionmodel uses a sharp-interface approach rather than a diffuse
of the boundary values of the chemical potential to perform dnterface. Nevertheless, it shares with TDGL models the ad-
linear stability analysis of the planar interface separating ¥antage of automatic interface tracking and accommodation
stressed two-dimensional semi-infinite solid from a fitfid. of topological changes. It also provides a clear connection
Rice and Chuand found boundary values for the chemical between model variables and thermodynamic/kinetic param-
potential for a cavity within an elastically deformed infinite eters describing physical systems, and therefore allows one
solid. Grinfeld? and Srolovit2® have both re-examined the to adjust the absolute rates of different mechanisms of mass
role played by elastic deformation in determining the stabil-transport. And because it formulates the dynamics in terms
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cally, then we may consider the components of the stress and
strain tensorgr;; ande;; as constant averaged quantities over
its volume, 6V, so that

1 10V
5W2:§ Tij €j oV= E E Jjj €j oz,
FIG. 1. Schematic illustration of the virtual motion of a solid-fluid interface 1 @
by coherent deposition of a volume of sol®¥, causing the local surface =— AO(}; €5z,
element to be displaced a distanéz The work required for this deforma- 2

tion is assumed to be the sum @) the work required to form the extra
surfaceSA, and(2) the elastic work required to make the added solid fit
coherently.

Combining Egs(1) and (2) gives

SW= Agdz= Q6N, ()

1.,
’yK+§O':E

7K+§ o€

of linear irreversible thermodynamics, it can be readily ex-where() is the molar volume of the deposited material, and
tended to include other possible driving forces such as thersN is the number of moles deposited. With the above as-
mal gradients and electric fields. This model therefore couldumptions, this incremental work is equal to the incremental
form the basis for a processing design tool that, in conjuncehange in the Helmholtz free energy of the deposited mate-
tion with limited experimental studies, might be used to de-ial, and the bracketed quantity on the right side of ).
termine optimal processing routes for obtaining desired mican be immediately identified as the difference in chemical
crostructures. potential between the fluid and the adjacent solid. Therefore,
In the next section, we describe the hybrid numerical

method for computing boundary values of the chemical po- |, — ;04| O «+ 1 Qo:el,

tential and for simulating the dynamics of interface motion. 2 @)
We then give examples that illustrate some of the 1 .

advantages—and limitations—of the current model. Finally, =u’+ Q| yr+ > eC:e|,

we outline some approaches that are underway for improving

the accuracy of the chemical potential calculation. where 1 is the chemical potential of the relaxed solid in

equilibrium with a zero-curvature interface. The last form
Il DRIVING FORCE: CURVATURE AND ELASTIC arises from assumlng linear elasticity, Wlth.StIffneSS ten§or
ENERGY DENSITY C..Although Eq.(4) is gener.al epough to mclyde_elasyc

anisotropy, we use an isotropic stiffness tensor in this article.

Driving forces for interface motion under the combined Note that Eq.(4) is a valid expression for the chemical

influences of mean curvature and elastic energy density haysotential only along single-component solid-fluid interfaces
been derived elsewhere with varying degrees of figotAll  that are isotropic iny. The relative magnitudes of the second
of these derivations assume that single-component interfacgnd third terms on the right side of E(4) have a strong
motion occurs by coherent dissolution to and coherent preinfluence on the distribution of chemical potential along such
cipitation from a fluid of the same composition as the solid,interfaces, and a rich variety of interface motions are acces-
and they all arrive at essentially the same expression for theible from this restricted equation. Throughout the remainder
boundary value of the chemical potential. To motivate thalf this article we will use Eq(4) to compute the driving
expression, consider the isothermal work per mole perforce for interface motion and, consequently, restrict our at-
formed in coherently precipitating a solid layer of thicknesstention to those types of interfaces for which E4j.is valid.
6z onto a small interfacial element. That work may be ex-We therefore do not consider solid-solid interfaces like grain
pressed as the sum ¢f) the incremental work required to boundaries and interphase boundaries.
displace the interface ar(@) the deformation work required

to make the solid fit coherentlsee Fig. 1 The first com-
ponent of the sum is . COMPUTATIONAL METHODS

dA oV The numerical method uses a digital image to model a
OW1=7yoA=y -5 — 82=ykRAooZ, (1) microstructure. That is, the image of a portion of a heteroge-
neous microstructure is mapped onto a regular lattice of 2D
wherey is the interfacial free energy densitgssumed to be square or 3D cubic elementpixels. Each element in the
isotropig, /A is the incremental change in the interface ele-|attice is assigned the thermodynamic properties of the phase
ment, of initial areaA, accompanying its normal displace- corresponding to its position in the original microstructural
ment by 52, and k is the mean curvature of the interfacial image. D|g|ta| images can therefore reproduce 2D or 3D mi_
element. The second component to the work is given by  crostructures of virtually arbitrary complexity, although in
this article we restrict attention to 2D microstructures. Fur-
5W2=f gjje;dV. thermore, the discretization reduces the problem of calculat-
v ing continuum microstructural evolution to that of evaluating
If the precipitated volumegV is small enough, and if it can small changes in the local pixel environment. The relative
be considered to be deformed homogeneously and quasistasize of a microstructure that can be stored this way—that is,
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the size of the microstructure divided by the size of the mini-nodes of which are located at the pixel corners. The displace-
mum resolvable microstructural feature—is somewhat lim-ment field u(x,y) is approximated using a standard finite
ited by the computer’'s memory capacity. Even so, on a highelement expansion for a four-noded element,

performance work station one can easily accommodate ratios

of at least 100—1000 in 2D. uPe—uP? u™—u"
The pixels comprising the microstructure image are  Ui(%y)=ui"+ : X+ £ )y

treated as continuum 2D “volume” elements characterized

by a parametery, that defines the fraction of each phase uf+ uP = ue—uf™

within that element. In the general case of mphase sys- £ Xy,

tem, one could think ofy as ann tuple, or a vector in an
orthogonah space, with each vector component defining thewhereu?", for example, is the value of thiedirection dis-
phase fraction of a different phase. For a microstructure complacement at the southwe@bwer lefthand corngrnode of
posed of a single-component solid phase and an otherwigs@e square elemeritjndicates either th& or y component of
inert fluid containing that component, which is the micro- the displacement is the edge length of the square element
structure type that we will focus on in this papermay be in the reference state, andandy are continuous variables
thought of as a scalar defining the area fraction of the pixelvith respect to a local coordinate system having the south-
occupied by the solid phas€@=7,<1). Mass transport west node as its origin.
mechanisms and rates are fixed by specifying a range of After specifying the mechanical conditions at each of the
pixel exchange interactions and employing finite differenceperiodic boundaries of the systefim these simulations, we
algorithms to approximate the partial differential equationsused either fixed grips, fixed displacement rate, or fixed trac-
(PDESs describing the time rate of change gfwithin each  tions along the boundarigsthe equilibrium nodal displace-
pixel. ments are computed by minimizing the linear elastic strain
One other advantage of the digital-image approach ignergy, according to a fast conjugate gradient algorithm writ-
that, in addition to approximating PDEs by finite differenceten specifically to operate on regular square element meshes
methods, it is possible to devise efficient numerical routinesvith periodic boundary condition'$.Since this is an iterative
to compute physical quantities that determine the local drivsolver, one must specify a maximum value for the total en-
ing force for interface motion within the microstructure. We ergy gradient below which the system is considered to be
use two such algorithms in the present simulations, one tgelaxed. For these simulations, the maximum gradient is set
compute local interface curvature and one to determine they 10~ ° times the number of elements.
elastic strain energy density field. Both of these algorithms  There is some question as to how the elastic constants of
have been described in considerable detail elsewhér@nd  a given pixel should depend on the value mfwithin that
they will be only briefly outlined here. pixel. Certainly whenp=1 and 0, the bulk and shear moduli
are equal to those of the solid and fluid phase, respectively.
An appropriate functional dependence of the elastic con-
The algorithm used to compute curvature has been destants ony for 0<#<1 is not readily apparent, however. In
scribed in Ref. 1. It is based on the concept of approximatingy composite medium, the effective elastic constants depend
the interface between two phases by linearly interpolating afot only on the fraction of each phase present, but also on the
isopotential contour, or level set, through a 2D or 3D pointspatial distribution of those phases relative to the applied
set (the 7-values assigned to the center of each pixel elejoad. Thus a rigorously correct choice for the elastic con-
meny. We refer to this level set as the equivalent sharp surstants of a given pixel requires knowledge of the phase dis-
face (ESS. A particular value ofy is selected as the inter- tripution within that pixel. In this article, we sacrifice some

polation point, usually 0.5 for a two-phase system. The levehccuracy for the sake of considerable numerical efficiency by
set is thus composed of connected line segments in 20xssigning to each pixel

Methods for constructing 2D level sets from 3D point sets
have been publisheld,so there is no conceptual difficulty in (K¢,Gp)  p<npg*,
extending the method to three dimensions. (K,G)= (Ko.Go) 7= 1"
Having constructed the ESS for a given microstructural s} =T
image, the unit outward normal vectarfor each segment
can be easily determined from vector algebra. Then the di
crete approximation to the mean curvaturef that portion
of the interface can be calculated according to

A. Mean curvature

whereK is the bulk modulusG is the shear modulus, the
Ss’ubscriptsf ands denote fluid and solid, respectively. The
cutoff value, %*, is chosen as the value that produces the
closest agreement between numerical calculation and the
k=Vgn (5) analytical prediction of the strain energy distribution along
. . . - the surface of a circular hole in a uniaxially strained homo-
by using numerical differentiation to compute the surface . ;
divergence. geneous sheet. We determ_lne the _valuefpﬁn the simula-
tion results(Sec. IV) and, in the discussiofSec. ), we

describe a potentially more accurate method that is currently
under scrutiny.

We assume plane-stress elasticity, and use the pixel grid By averaging the equilibrium nodal strains of a given
of the digital image to define a finite element mesh, thepixel P, we compute the average strain witlin The aver-

B. Elastic energy density
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age elastic strain energy density in each pixel is calculated, 220 - r . r . r S

assuming linear elasticity, and is used in E4).to determine [ Analytical

the elastic contribution to the chemical potential. 18.0 | . n:=0.5 ° o1

[ a1.=0.25 . )

C. Kinetics 140 | ©n=0.02 ° ! UEEDF
In general, gradients in the boundary values of the E.? o]

chemical potential will drive a redistribution of material. & 10.0 ]

This redistribution may be accomplished by one or more of g;i

several possible transport paths/mechanisms. In this numeri- 6.0 |

cal framework, a given rate-controlling step is modeled by [

its corresponding continuum rate equation, which is approxi- 20 ¢9 1

mated by a finite difference formulation and adaptively inte- ]

rated forward in time using a maximum dimensionless time -2.0 - . L . L
g 9 0.00 0.12 0.25 0.38 0.50

step ofAt, which we set to unity for convenience.

The simulations presented in this article were all per-
formed using surface-attachment-limited kinetiGALK), FIG. 2. Distribution of elastic strain energy density along the upper right
by which it is assumed that diffusion rates are much greateguadrant of a circular cavity in a homogeneous sheet subjected to an applied

. . . tresso,ppin they direction. @ is the interior angle between theaxis and
thar.' the rate Of_ cohgrent accr§t|orj/d|ssolut|oq of matter e radial position vector whose origin is at the center of the cavity.
the interface. With this assumption it may readily be shbwn
that the net rate of accretion per unit ardaat any pointx

0/

along the interface is to the analytical result, as shown in Fig. 2. The valueybf
dN Kk that most closely reproduces the analytical curve is 0.02, and
J(x)= rTi SRA_LFK [,uamb— w(X)], (6) so that value is used to obtain the following results. We will

return later to some of the implications of choosing this
wherekga k is the reaction rate constarR, is the gas con- value.

stant, T the absolute temperature, apd™ is the ambient

chemical potential of diffusing species in the fluid phase,B. Chemical potential along a sinusoidal interface

which is approximately constant when diffusion is very fast . s .
compared to equilibration with the interface. Each term in To find an |nd|cat|on. of how a(;curately the numerical

Eqg. (6) is made dimensionless by scaling time and IengtHnethOd calculates chemlcgl potentilal', we compare our nu-
values to the reaction rate constant and pixel edge leisgth merical results to an analytical prediction for a shallow sinu-

Appendix A for a table of all dimensionless quantities usedSOid"’?I perturbation in a ZD_SOHd that is thick compgred to the
in this articla. Equation(6) is then discretized to give amplitude of the perturbation. We choose a relatively small
system, 10k51 pixels to conduct the test, with periodic

A np=C[ 1= 1, ]S AL, (7)  boundary conditions ix, and a tensile stress,,=o,. The

where 7, is the solid volume fraction located within pixel inierface is given byy=a cos 2rx/\, with a=5 and
P,C is a dimensionless rate constant, @dis the (dimen- =100. ) .
sionless length of interface associated with tReh pixel. Analytical expressions for the stress components along

The value ofu®™ that conserves mass can be calculatedhe surface of a sine wave under uniaxial tension are
as the mean value of over the entire set of interfacel:! known'® and may be used to calculate the boundary values of

the strain energy densiiigee Appendix B

— JrpndS At fixed applied stress and surface geometry, the magni-
m= JrdS tude of the elastic term relative to the curvature term in Eq.
(4) is determined by the dimensionless ratie= oy\/L/Ey,
where E is the Young's modulus of the solid ard is a
characteristic length that sets the scale of the sytame
take L=\, the wavelength of the perturbation. Numerical
and analytical values for the chemical potential are shown in

All quantities used in the remainder of this article haveFig. 3 for two values of this ratio. When the curvature term
been made dimensionlegsee Appendix A for the conver- dominates[3=1, see Fig. @&)], the numerical values are
siong. somewhat scattered about the analytical curve, reflecting
pixel-to-pixel inaccuracy in the curvature calculation caused
by the sawtooth geometry of the surface in the digital image.

As mentioned in the previous section, we choose a cutoffn this particular instance, the scatter seems to be about 30%
value for 7, above which a pixel is assigned the elastic prop-of the range in values, although it must be remembered that
erties of the solid. To determine a reasonable valuesfgr  the range in curvature values is quite small for such a shal-
we numerically calculate, for different trial values f, the  low sine wave. The relative accuracy in the curvature is
elastic strain energy density distribution along the surface ofjreater when the range of curvatures is wider. In any event,
a circular cavity in a uniaxially strained sheet, and comparghe ESS method for calculating curvature is substantially

Setting 2™ greater/less than. will cause a monotonic
increase/decrease in solid mass.

IV. SIMULATION RESULTS

A. Determination of #*
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substantially improve numerical convergence to an analytical

(a) 0.40

! ] result. As already noted, the underlying digital image causes
030 — ., Q:?(I)S;:Z:'id _ | interfaces to have a sawtooth shape and, while the curvature
[ 0101 x 51 grid % o calculation is more accurate by the ESS algorithm than by
0.20 o 401 x 201 grid PR other methods for digital images® the terraced nature of
0.10 | ) : surfaces cannot be eliminated by the former method. For the
§ - finite element calculations of elastic strain energy density,
T 000 : the step-function dependence of the elastic modulyaiso
2 _g.10 Fo%mg causes a sawtooth surface geometry. Therefore, even with
5 qw:I o ] grid refinement surfaces are still composed of ledges and
020Ff o o° 1 terraces, and one can expect a finite amount of local scatter
030 | z=1 ] in surface quantities, like boundary values of chemical po-
' tential.
-0.40 P N S — To test the convergence of the numerical solution, simu-
05 06 0.7 0.8 0.9 1.0 |ations were conducted on the same sine wave using pixel
X/ grids of 51x27, 101x51, 201x101, and 40k201. The cal-
culated chemical potentials are shown in Figs) and 3b).
It is clear that grid refinement has, at best, a weak effect on
convergence to the analytical curve, since the local scatter is
(b) - — not appreciably reduced with increasing resolution. Later, in
Analytical 1 the discussion, possibilities for further improving numerical
015 | ® 51 x 27 mesh 1 convergence will be addressed. It will become evident in the
©201 x 101 mesh ] next section, however, that the local scatter in chemical po-
0 401 x 201 mesh . . .
010 | _ 1 tential does not markedly affect the predicted dynamics of
= interface motion.
2 005
X C. Evolution of a sinusoidal perturbation
0.00 Referring to Fig. 3, it is clear that the position of maxi-
mum chemical potential shifts from the crest of the surface,
-0.05 | =76 . at low applied stresses, to the valley at higher stresses.
] Therefore, at low applied stresses, mass should flow from the
-0.10 L S S— crest to the valley, causing a decrease in amplitude. At
0.5 0.6 0.7 08 0.9 1.0 higher stresses, mass should flow from the valley to the crest,

XIh and the amplitude, at least initially, should increase. As men-
FIG. 3. Comparison of numerical computation of dimensionless chemicationed in the introduction, several investigations of the initial
po_tentiallto analytical result&olid Iines, §howing the gffect of grid reso- stability of such a pertubation toward amplitude changes
Iu_tlon_. \is the_ Wayelength of the sinusoidal perturbation that is under tennave been publishéallz’ls Of these, only Srolovit? con-
sion in thex direction.(a) %=1, and(b) 2=76. . - . . .
ducted a linear stability analysis for both surface diffusion
kinetics and SALK(which he referred to as evaporation/
condensation His prediction for SALK is that any wave
more accurate than alternative methods for digital im&§es, number k>k* =20)2<X/Ey will decay exponentially, while
and the effect of the local scatter on the predicted dynamicknger wavelengths are unstable toward growing in ampli-
of evolution has been previously shown to be quite sthall. tude. In a later articl Yang and Srolovitz simulated the
When the elastic term in Eq4) dominates[2=76 in  evolution of a sine wave by surface diffusion and showed
Fig. 3(b)], the numerical calculations underestimate the anathat at high stresses a surface instability manifested itself as
lytical curve except ak/A =0 and 1, where it slightly over- the appearance and growth of a sharp cracklike feature in the
estimates the analytical values. This is an artifact of havingalleys. We know of no prior predictions for the analogous
chosen a single step-function dependence of stiffnesg,on temporal evolution by SALK, which we now present.
which causes the finite element algorithm to interpret the To facilitate a comparison with the results of Yang and
interface as being terraced. At the shallow amplitudes used iBrolovitz* we report results in units of scaled stress,
this example, the terraces are fairly long, and the effect is te= o9y/A/yE and scaled timer=\?/(Cy) [C is the dimen-
flatten out the strain energy distribution. This interpretationsionless rate constant from E@)]. Figure 4 shows the evo-
is supported by the calculated strain energy density along ltion by SALK when %=2.5. The amplitude slowly in-
circle shown in Fig. 2; the curve fop =0.02 fits the ana- creases at first, and thentat1.7x10 3 7, a groove begins
lytical curve quite closely along most of the circle, exceptto form in the valley. The groove sharpens and extends fur-
near /2 where the surface is approximated as a long flather into the solid with time due to the increasing strain
terrace. energy at the tip. We do not, however, identify the groove as
Compared with other applications of finite element/finitea “crack”. Whereas growth of a crack can occur when the
difference methods, one might not expect grid refinement tdocal stress exceeds the bond strength, the formation of the
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12 r
0
10 t+ 1
2.6x10° GROWTH
8 8 - T
©
. x 6 F
= DECAY
4} 4
2 | 4
FIG. 4. Evolution by SALK of a sinusoidally perturbed interface ¥or2.5. 0 ; ) . A
The ratio of initial amplitude to wavelength &, /A =0.05. Times shown at 0 10 20 30
left are in terms ofr. yAx 10*

FIG. 6. Stability map for a sinusoidal surface under the influence of both

. . . ._capillary and elastic driving forces.
groove in Fig. 4 occurs as a result of a local maximum in

chemical potential, and its growth occurs by material trans-

pprt over distances that are large compared to atoml_c d_|me or amplitude decay, although the trajectory of evolution is
sions. Furthermore, the length scale of a crack tip is o

i di : d i h absol di till much like the stress-free trajectory. Clearly from Fig. 5,
atoml_c Imensions, and we can claim no such abso ute diz critical value of>—between 1 and 2—exists for which the
mensions for the groove tip since, according to the con

. ¢ lati f th del. the mini | h | interface is unstable toward formation and growth of a
Flnuum ormu ayon ort € moael, the minimum lengt S‘Caegroove in the valley. Further simulations not depicted in Fig.
is set by the grid resolutio#.

. . 5 indicate3, .= 1.7+ 0.1. This value agrees closely with that
Figure 5 shows, for several values®f the time depen- ¢ g y

) ) ; predicted by Srolovitz’s linear stability analysis (S,
dence of the maximum height differende, scaled by the  _; 77 ;5ing the same physical constants as for these simu-
initial amplitude of the sinusoidal surface. The stress-fre

! ; Eiations).
gyni\/lm:lqs(%:fo) C(;lrresponl(_isdver)é Closelyf to thr?t”predlc_ted Knowledge of2, . allows one to plot a map for the per-

y iJVI\?If or/ t el arr?p ltude decay of a shallow sine y,eq syrface, as shown in Fig. 6, that indicates the direction
wave. enao/A<1, then of the surface instability. In Fig. 6, the ordinate valugs' E

da ) indicate the strength of the elastic contributiorytpand the
a:_Ck a, abscissa valueg/\ indicate the strength of the curvature
) ) ] 1 contribution. The boundary curve separating the growth field
wherek=2m/\. Integration yields, to first order it? from the decay field corresponds ¥q .
a—ag=—agCKk?t, (8)

i.e., the negative slope for the=0 curve in Fig. 5 is pro- D- RANDOMLY PACKED PARTICLES

portional toC. Low stresse$>=1) lower the driving force We now proceed to analysis of a more complicated sys-

tem, namely a random packing of solid circles in two dimen-
sions, shown at the top of Fig. 7. Each particle has a diameter
d selected at random within a range of 11-31 pixels, and
each was placed within a 18A.60 box by dropping it from
] randomly selected locations along the top boundary, using
periodic boundaries in the horizontal direction, until further
displacement was prevented by contact with other particles.
Once all the particlega total of 53 were placed, yielding a
solid fraction f=0.74, periodic boundary conditions were
also enforced along the top and bottom edges. A uniaxial
tensile strairey was applied along the horizontal direction. A
side-by-side comparison of the predicted evolution using
7] identical rate constant€ is shown in Fig. 7 forEeSL/y
=0 and 2.5; the scaled unit of time is now taken to be
=L2/(Cy) with L=160 being the length of the system.
When no deformation is applied to the particle system,
¥z (x 1000 ) reduction of surface free energy causes evolution toward a
FIG. 5. Maximum height difference as a function of time for a sinusoidal 2D lamellar morphologyrecall th'at 6}” bOUI"ldaI’.IeS are peri-
surface evolving under different values Bf Height is normalized by the odic). The presence of deformation in tkedirection, on the
initial amplitude. other hand, evidently produces a strain energy distribution

h/2a,
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(a) 3.0 r r T
25 J
Exx 2.0
<15}
1.0
1.6x10™41
0.5
00 1 1 L 1
0 2 4 6 8 10
t/t (x 10°)
6.25x 10741
(b} 4.0 T Y T r . r r T
6.25x 10731 b
3.0 : J
o 8)()(=
o \ o ¢,=0.005
8 2
FIG. 7. Assembly of particles in a 18®ox. Left column shows evolution + -0 A T
of system by SALK with no applied deformation. Right column shows < E
evolution with a tensile strain of 0.005 applied in the horizontal direction.
1.0 |
that makes certain of the initial interparticle contacts un-
stable toward attenuation and severance. As more of the con- 0.0 o

tacts disappear by this instability, increasing strain energy 0 1 ) 3 ' 4 5

density is shifted to the remaining load-bearing contacts, t/t {x 10°)

which accelerates their attenuation. This process is repeated

until the solid suffers a complete division to form an isolated™!C: 8. Reduction with time ofg) surface free energy a8 total Helm-

domain. Thus, invoking the nomenclature of NewnhamhOItZ free energy for the trajectories shown in Fig. 7.

et al,?? deformation causes a change in the predicted con-

nectivity of the structure from 1-1 to 0-2. extensively in Ref. 1. Here we calculate the time dependence
The trajectories shown in Fig. 7 are sensitively depenvof the surface free energy and the total free energy.

dent, not only on the applied deformation, but also on the

initial geometry. In particular, the lamellar morphology that | g rface free energy and total free energy

ultimately results without deformation is entirely a result of _ _ )

the inhomogeneous packing near the top and bottom bound- For convenience of notation, we refer to the e_volutlon

aries. A packing algorithm that allows particles to overlaptrajectory in the left column of Fig. 7 a&} and that in the

those boundaries, as they do for the horizontal boundarie&§ight column as7 q0s. Figure 8 gives the surface free en-

would presumably result in a much more statistically isotro-€fdy and the total (Helmholt free energy, F=yA

pic microstructure. But despite this dependence on initial ge= JveadV, as functions of time for both of the trajectories

ometry, one might expect the gross influences ofShown in Fig. 7. Ungier defo.rmatlon,' the surface free energy

deformation—provided that it is large enough—to be quali-c@nnot relax as rapidly as it can without deformat]@ig.

tatively the same whether or not particle overlap along thé@], even though the deformed system has a higher total

top and bottom boundaries is allowed. The elastic strain enfl€® energy than the undeformed difég. 8b)].

ergy density should be relatively concentrated along a band, Several salient points may be noted about the pldt of

approximately orthogonal to the loading axis, with the leasiV€rsus time in Fig. &). First, the difference inF(t=0)

load-bearing area. Propagation of cracklike flaws due to reD&tween7oqos and.7 is equal to the total stored elastic

peated neck rupture, if it occurs at all, should be observe@nergy in the former. Second, judging from Fig. 7, the curve

along this band. for €,,=0 should asymptotically approach the value for a
In addition to these qualitative influences of elastic de-Straight lamella, i.e.,

formation, it is possible to quantitatively assess certain as-  |imF=2yL=0.32.

pects of the evolution in the same way as described more t—«
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Similarly, when €,,=0.005, the severance of the network TABLE I. Physical values of the important variables in Fig. 7, assuming
destroys the connectivity of the solid in the horizontal direc-System dimensions of 16m>16 um andT=1500 K.

tion. Since the solid is thereafter surrounded by zero-
modulus phase, it is strain-free. The limiting shape is there

Quantity Value

fore a circle enclosing the same amount of solid as the Young's modulusg _ 100 GPa
lamella. so Surface free energy density, 1 J/nt
’ Molar volume,Q 8% 1075 m¥mol

lim F=2y\mV.=0.49,
t—oo

whereVg is the volume(strictly, area of solid.

The limiting slopes of the curves s-0" in Fig. 8(b) mation required to cause cracklike flaws in sintering powders

should increase as the mean patrticle size decreases, provided

are - ; . .
the initial microstructural homogeneity remains the same.
i r  dF [ —34.4x10, for .7, Thus finer microstructures not only have faster evolution ki-
im ———— —=~ ; ; i
Lot F(t=0) dt | —27.5x10°, for .7o.00s. netics, bu_t they shquld be more resistant to dehomogeniza-
tion by this mechanism.
One may viewF as an N— 1)-dimensional hypersurface Can reasonable values of physical parameters cause a

in an N-dimensional space, whei¢ is the number of con- trajectory like.7 gos? Assuming dimensions of 16mx16
stitutive variables for the system, including the appliedum and a temperature of 1500 K, the dimensionless vari-
strain. Accordingly, the initial states of y and.7yqs may  ables used in that simulation correspond to physical values
be thought of as two positionSy, and Fg o5 0n.7. The  shown in Table I. These correspond approximately to the
evolution traces the steepest monotonically decreasing patfalues ofy and E for MgO. Furthermore, a strain of 0.005
on .7 consistent with fixed applied strain and the kinetic could be easily caused by, say, thermal expansion mismatch
constraints of motion by SALK. From the fact thet de-  between two materials over 1000 K, if the coefficients of
creases only 2/3 as rapidly along, ggsas it does along’, thermal expansion differ by at leasB8.0™°, as they do for

one may infer that the local topography.@fis “shallower” Pt/MgO. One might suppose, then, that such phenomena
at Fq 005 than atFy—at least along those paths allowed by could be important in the high-temperature performance of
SALK at fixed applied strain—despite the fact thag s  certain porous thin or thick ceramic films on a metallic sub-
>Fg. strate.

Some comments are in order on the model itself. First,
solid-solid interfaces, including grain boundaries, are not in-
cluded. The thermodynamics and kinetics become much

Gradient flow conceptd have been used to show that more complicated when such interfaces are present, particu-
motion by (x— ), that is, by SALK, allows the surface free larly if they are incohererfo=?’ Thus true sintering/grain
energy to decrease at a higher rate than does motion by amyowth phenomena, which often involve substantial diffusion
other volume-conserving mechanism, like surface diffusiorof matter along grain boundaries, are not within the scope of
(motion by Laplacian of mean curvature for isotropi¢. ~ the model in its current incarnation. For the same reason, the
Previous 2D simulations using this model gave the samenodel does not address diffusional creep along grain bound-
result’ However, in the present simulations, motion by aries that can cause substantial rearrangement. However,
SALK is equivalent to ft— ) rather than k— «), the dif-  with some minor modifications, the model could account for
ference being in the contributions joof the elastic energy directional diffusional lattice creep and viscous flow. The
density. Furthermore, there is no one-to-one correspondengmssibility of extending this model to allow simulation of
betweenx and the local strain energy density, since the latteimportant phenomena, such as grain boundary diffusion and
guantity will depend on longer-range structural features ofinterfacial creep, is a subject of continuing inquiry.
the microstructure such as the connectivity. Trajectogyin As described in the previous sections, digitization of a
Fig. 7 is motion byx— k. Therefore, as predicted by Taylor smooth surface gives rise to local scatter in calculated cur-
and Cahf® and as further demonstrated in Ref. 1, that tra-vature. Determination of the chemical potential distribution
jectory is a constrained gradient flow for surface free energyalong the corresponding smooth surface is therefore prob-
On the other hand, there is no reason to expect that the santematic. Although the dynamics of interface motion and sta-
should be true for7yggs. In fact, under any circumstances bility regimes do not seem to be greatly affected by the scat-
for which the motion law cannot be written as some functionter, it would be desirable to have a more accurate
of curvature or of weighted mean curvatéré? there is no  determination of chemical potential. It may be possible, by
research available to suggest that a gradient flow can baveraging over a certain range of neighboring elements, to
realized. smooth the calculated chemical potential distribution along a

Srolovitz's stability analysis for sinusoidal perturba- digitized interface. We have chosen to exclude any spatial
tions™ indicates that the relative contribution to the chemicalaveraging of the curvature in this work because it introduces
potential of elastic strain energy, compared to that of surfacanother degree of freedom into the calculations, namely the
free energy, should increase with increasing size scale. Thiseighted distance over which to averabehe boundary val-
should be generally true, regardless of system geometry. Onges. If averaging were to be included in this model, one
implication of this fact is that the magnitude of elastic defor-could select an “optimum” weighting function using the

V. DISCUSSION
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condition that the_, norm be minimized for a certain model ACKNOWLEDGMENTS

surface geometry, like a sinusoid. However, it is not clear ) ) )

that the same weighting will produce the best results for all & wish to thank Ed Fuller for helpful discussions, and

possible interface geometries. both J. Chuang and A.C. Powell IV for reviewing the manu-
The model uses the square pixel elements of a digitaPc"'Pt

image as both volume elements in the mass transport algo-

rithms and as finite elements in the elastic calculations. As

mentioned earlier, this leads to the ambiguity of estimatingAPPENDIX A: DIMENSIONLESS VARIABLES

the elastic properties for elements witkc@<<1. An adaptive

mesh triangulation algorithm would eliminate this ambiguity. ~ The following dimensionless variables are catalogued

A triangulated mesh could always be constructed such thdtere in terms of the groups by which they are defined. The

each segment of the ESS would correspond to an edge of@uantities associated with each symbol are given in the text.

triangular element. Each element then could be taken to have Symbol Group

either »=1 or 0. Such a nonuniform mesh would have to be

recalculated continually as the interfaces evolve, and this

process requires substantial computational overhead. But the

potential benefit of resolving the strain energy density more

acqurately at interfaces make_s this an attractive alternative y — yQI(RTE)

which we are currently exploring.

All lengths, L (e.g.,\) — L/¢

u — ulRT

Finally, we comment on the computational resources re- K — K&
quired to perform simulations like those presented in this
article. By far, the most memory-intensive and CPU- E,.K,G — EQ/RT,KQ/RT,GQ/RT
intensive portions of the simulations are the finite element
calculations. Memory and processing requirements also in- o — ocQIRT
crease with the number of elements in the system. For the
combined ESS/FE simulation shown in the right column of C — ksax27/§

Fig. 7, the memory usage was 15.5 megabytes which aver-

ages to about 600 bytes per pixel element. In terms of COMAPPENDIX B: STRAIN ENERGY DENSITY ALONG A
putational speed, the same simulation used roughly 50 prgoEFORMED SINUSOIDAL SOLID-ELUID

cessor hours on a MIPS R4400 chiRb0 MH2z). We do not INTERFACE

claim that the algorithms have been fully optimized for

maximum performance, and it is expected that future code Asaro and Tillet’ have given analytical expressions for
refinements will result in substantial increases in perforthe stress tensor components in a semi-infinite solid bounded

mance. by a sinusoidal surface perturbation:

y=a Ccoskx.

VI. SUMMARY . .
From their expressions, we may evaluate the boundary val-

A new model has been developed that allows one taies of the stress tensor, which yields
simulate the combined influences of curvature and elastic 5 Ak coskx
energy on the thermodynamics, kinetics, and trajectory of ~9xx=0o[1—a(ak® coskx—2k)e coskx],

microstructure evolution in two dimensional systems. The (B1)
model F:qmbmes an equn{alent sharp surfd€®9 approach o —azkzao coskxe 2k oskx cogkx, (B2)
and a finite element algorithm to calculate the local boundary

values of the chemical potential along solidfluid interfaces of 0= —akoo(1—ak cos kx)e~ 2K °skx g kx, (B3)

arbitrary geometry. Tracking of the interface motion and of
topological transformations are handled automatically. Wewhere o, is the applied stress. The compliance tensor may
used the model in this article to simulate, for the first time,be written

evolution within a random porous body by a first-order linear

interface-reaction kinetic law under these driving forces. G*+GK G?-GK 0
Other rate laws, such as surface diffusion and bulk dif- 4G°K 4G%K

fusion, are readily incorporated into the mo&é¥,and addi- 2 2

. o . - G°-GK G*+GK

tional driving forces such as thermal gradients can be exam- S= 5 5

ined. With the finite element algorithm, one can also track 4G°K 4G°K

the evolution of macroscopic composite properties, e.g., the 0 0 1

effective elastic modulus and effective thermal and electrical G

conductivities. Such a modeling framework is therefore not

only useful for gaining quantitative theoretical insight into with K=E/2(1—-v) andG=E/2(1+ v) for plane stress de-
these complex dissipation phenomena, but may also be dormations. The elastic strain energy=(0:S:0)/2, and
ideal candidate for integrated process modeling. upon substitution one obtains
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0'(2)6_ 2ak coskx

4GK
— 42k G(e?k oskx— 1) —K]cog kx
—4G(2a%k® cos’ kx—a’k* cog kx)

{(G-l— K)eZak coskx

+4a%k?K sir? kx+4ak coskx] (G + K)egak coskx

—2a%k?K sir? kx]+a*k*K sir? 2kx}. (B4)
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